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We study the structure of generating functions of sieved polynomials and their
numerators. Examples and applications are mentioned. © 1986 Academic Press, Inc.

1. INTRODUCTION

The sieved ultraspherical polynomials were introduced in [1]. The
sieved ultraspherical polynomials of the first kind c~(x; k) are generated by

2xc~(x; k) = c~+ l(X; k) +C~_l(X; k),

2x(m + A.) C~k(X; k) = (m + 2,.1.) C~k+ l(X; k) + mC~k_l(X; k),

n =l=mk,

m>1,

(1.1)

with c8(x; k) = 1, c}(x; k) = x, and the sieved ultraspherical polynomials of
the second kind B~(x; k) are generated by

2xB~(x; k) = B~+ 1(I]; k) + B~_l (x; k),

2x(m + A.) B~k_l(X; k) = mB~k(x; k) + (m + 2,.1.) B~k_2(X; k),

n + 1=l=mk

m> 1,

(1.2)

where B8(x; k) = 1 and B}(x; k) = 2x if k> 1; B}(x; 1) = 2(,.1. + 1) x. These
polynomials are orthogonal; for their orthogonality relation see [1]. In
[8] we introduced a generalization of the c~'s and B~'s analoguous to the
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generalizations of the ultraspherical polynomials due to Pollaczek [12 J
and Szego [15]. The weight functions for our polynomials were computed
in [8]. The work [8 J was part I of a series of papers on sieved orthogonal
polynomials. Part II, [7J, dealt with sieved random walk polynomials
while part III, [9 J, treated sieved polynomials that arc orthogonal on
several intervals.

The purpose of this note is to study the structure of generating functions
of general sieved polynomials of the second kind. We have been unsuc­
cessful in obtaining analoguous results for sieved polynomials of the first
kind. Generating functions can be used to obtain asymptotic expansions for
the polynomials, say {Pn(x)}, for large n and fixed x in the complex
x plane. The asymptotic behavior of the polynomials usually determines the
spectral measure(s) of the associated Jacobi matrix. That spectral measure
is the measure the polynomials are orthogonal with respect to, see Askey
and Ismail [3 J, Nevai [11]. Recovering the spectral measure from the
asymptotic behavior of Pn(x) is, in a way, a discrete analogue of the inverse
scattering problem, Case [5J and, Case and Kac [6].

The polynomials that we shall study are generated by

2xanPn(x)=b"p""(X)+CII PII(x)+dll p,, i(X), 11:;::0 (1.3)

with

and

Po{-x-) = 1, P I(X) = 0,

a,,=b,,=dn=l, c,,=O if kln+l,

(1.4 )

(1.5 )

amk _ i' bmk " Cmk "and dmk I are polynomials in m. (1.6)

The integer k is assumed to be at least 2. In Section 2 we first investigate
the structure of the generating functions

~ ~

L p,,(x) [n and L Pnk+'(X) [", 1=0, J, ..., k-· 1.
n~~() II ()

These structure theorems are Theorems 2.1 and 2.2. The polynomials
{Pf/(x)} defined by (1.3) and (1.4) are called the denominator polynomials
because they are the denominators of the associated continued fraction.
The numerator polynomials {p,~(x)} are the solutions of (1.3) that satisfy
the initial conditions

P6'(x) = 0, ( 1.7)



286 MOURAD E. H. ISMAIL

In view of (1.4) and (1.5) we have

Po(X) = 1, Pl(X) = 2x, p<f(x) = 0, pt(x) = 2. (1.8)

In Section 2 we also investigate the structure of the generating functions

00 00

L p:(x) tn and L p:k+lx) tn, 1=0, 1,..., k-1.
n~l n~O

Our results are stated as Theorems 2.3 and 2.4.
A classical theorem of Markov (Szego [16]) asserts that if the

polynomials {Pn(x)} are orthogonal with respect to a positive measure dfl,
that is,

foo Pn(x) Pm(x) dfl(S) = AnDm,n, Ao = 1,
-00

and dfl has a compact support then

. foo dfl(t)hm p:(z)/Pn(z) = --.
n~oo -00 z-t

(1.9 )

(1.10)

The left-hand side of (1.9) is the continued fraction associated with the
polynomials {Pn(x)}. So, the asymptotic behavior ofPn(z) andp:(z) deter­
mines the left-hand side of (1.9) and fl can then be computed from the
Perron-Stieltjes inversion formula

F(z) = foo dt/J( t)
-00 z-t

iff t/J(t
2
)-t/J(t

1
)= lim ft2F(t-ie)2-~(t+ie) dt,

e~O+ II nl

(1.11)

which holds when the support of dt/J is contained in a half line.
Generating functions have at least two important uses. They usually lead

to explicit formulas for the polynomials under consideration. Second,
Darboux's asymptotic method, Olver [12, Sect. 8.9], can frequently be
applied to generating functions in order to determine the asymptotic
behavior of the polynomials involved. Examples of this procedure are in
Olver [12], Szego [16], and Askey and Ismail [3].

Section 3 contains a sieved analogue of Roger's q-Hermite polynomials.
Rogers used his q-Hermite and q-ultraspherical polynomials to prove the
Rogers-Ramanujan identities, see [2] for references and details. Ismail and
Stanton [10] used the linearization of products of Roger's q-hermite
polynomials to prove the orthogonality relation of Askey and Wilson's 4rP3
polynomials. The 4rP3 polynomials are q-analogues of the 6-j symbols
(Askey and Wilson [4]).
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The results of this work have been used in [9]. Let {Pn(x)} be a
sequence of polynomials such that

po(X) = 1, Pl(X) = Aox + Eo (1.

and let Pn(x) be of precise degree n. It is well known that {Pn(x)} IS

orthogonal if and only if it satisfies a three term recurrence relation

and a positivity condition

n>O, (1.13)

n= 1, 2, 3, ....

When (1.13) and (1.14) hold the orthogonality relation will be

f') Pn(X) Pm(X) df1(x) = }'nOm,n,
- CD

with

(1.15)

n >0, }'O = 1. (1.

The condition },o = 1 is a normalization condition. When the sequence
{Bn/A n} and {Cn/(AnAn_d} are bounded the support of df1 will be
bounded and Markov's theorem will be applicable. This information will
be used in Section 3.

2. GENERATING FUNCTIONS

Set
co

G/(x; t):= L Pnk+b) tn,
n=O

It is easy to see that if

1=0, 1,..., k - 1. (2.1 )

w = exp(2ni/k),

then

k-l co CD

L w- jl L (twj)"hn=k L hnk+ltkn+1
j~O n~O n~O

(2.2)

(2.3 )

for 1=0, 1,..., k - 1. Now multiply (1.3) by tnw jn and add the resulting iden­
tities for n = 0, 1,... , then multiply the resulting series by w -jl and add for
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j = 0, 1,..., k - 1. This and the observation (2.3) give, after replacing tk by t,
the following identities

00

L (2xank+ 1- Cnk+l) Pnk+ I(X) tn

n=O
00 00

= L bnk+IPnk+l+l(X)tn+ L dnk+IPnk+l-l(X) tn, (2.4)
n=O n~O

where 1=0, 1,..., k-1. In terms of the generating functions Glx, t), (2.4)
becomes

2xGo(x, t)=G1(x, t)+Gk_1(X, t),

2xG1(x, t) = G1+I(X,t) + G1_ Jx, t), 1= 1, 2,..., k - 2,

00

L (2xank+k-l-Cnk+k-dpnk+k-l(X) t
n

n~O

00 00

= L bnk+k-1Pnk+k(X) tn+ L dnk +k- 1Pnk+k-2(X) tn.
n~O n~O

(2.5)

(2.6)

Observe that (2.6) is a differential equation involving Go(x, t), Gk_1(X, t),
Gk _ 2(X, t), and their derivatives (with respect to t). We now prove

THEOREM 2.1. The generating functions G1(x, t) of (2.1) are of the form

Glx, t) = F(x, t){ Ulx) + tUk_ I_ 2(X)}, 1=0, 1,..., k - 1, (2.7)

where F(x, t) is a power series depending on x and t but does not depend on l.
The Us are the Chebychev polynomials

( )
_ sin(n + 1) e

Un X - . e '
SIll

x = cos (), n = -2, -1,0, 1,.... (2.8)

Proof The recursion (1.3) and the initial conditions (1.4) define the
polynomials {Pn(x)} uniquely, hence the G/s are uniquely defined by (2.1).
The recurrence relation

n=O,I,..., (2.9)

and Uo(x) = 1, U _1(X) = 0, U _2(X) = -Uo(x) = -1, can be used to show
that the right-hand sides of (2.7) satisfy (2.5) for arbitrary F(x, t). Finally
the substitution of the right-hand sides of (2.7) for 1=0, k - 2, k - 1 gives a
differential equation (in t) with polynomial coefficients whose solution
F(x, t) obviously depends only on x, t and k. The integration constants
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involved in determining F(x, t) are functions of x and k and can be deter­
mined uniquely from the first few p's in (2.1) and (2.7). This completes the
proof.

We now derive a full generating function. Let

1.- 1 x-

G(x, t) = L t'G,(x, II.) = LPn(x) tn

'-0 0

THEORE\l 2.2. We have

.I. (I - 2/1. cos k() + t2k )L p,,(cos())t"= I ') () 2 F(cosH.t k
).

" 0 - ~t cos + t

Proof The relationship (2.7) and (2.9) imply

(2.10)

(2.11 )

I. 1

G(x, t)=F(x, tk) L {t'UtCr)+lkt'Uk '2(X)}. (2.121
,-- 0

It is easy to obtain

k 1

L tIUI(x)={I-tkUk(X)+tkIIL\ l(x)}:(l--2xl+1 2
),

1 __ ()

and

I. - I

L tk-tIUk __ I_2(X)={t2k+tkUk_2(X)_-tkllUk_I(X)}/(1-2xt+t2),
1-0

from (2.8) and standard trigonometric identities. The result now follows
from (2.12) and

(2.13 )

and the proof is complete.
We illustrate the aformentioned procedure by treating the sieved

polynomials B~(x; k) of (1.2). In this case

anI. 1=)·+11, b"k_I=I1, enk 1=0. dnk _ 1=11+2).,

and (2.6) becomes

c . c
= -:;- Go(x, t) + (2,.1. + 1) Gk __ 2(X, I) + t -;:- G, 2(X, I). (2.14)

ot 01
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Using (2.7), (2.9), and (2.13) we get

(}
2(..1, + 1){cos(kO) - t} F(cos 0, t) = {1 - 2t cos(kO) + t2} (}t F(cos 0, t).

Therefore

F(cos 0, t) = {1- 2t cos(kO) + t2} -,1-1.

This and (2.11) yield

(2.15)

00

L B~(cos 0; k) tn= (1- 2t cos 0 + t2)-1(1_ 2tk cos kO + t2k )-A.
n~O

(2.16)

The generating function (2.16) was derived in [1] as a limiting case of the
generating function of the continuous q-ultraspherical polynomials, but the
above direct proof is new. Another proof is in [9].

We now study generating functions for {p:(x)}. Let

00

Gt(x,t):= L Pnk+lx ) tn, I=O,l, ...,k-l. (2.17)
n~O

It is easy to see that

and that the generating function

00

ut(x, t):= L U:k+lx) tn

n=O

is given by

(2.18)

(2.19)

Observe that

pt(x) = ut(x) = 2UI _ 1(X),

The recursion (1.3) implies

1=0,1,..., k-l. (2.21 )

which leads to

n~0,1=0,.1,...,k-2, (2.22)

2xGt(x, t)=G7+1(X, t)+G7_1(X, t), 1= 1, 2,..., k - 2. (2.23)
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When 1=0, (2.22) yields the relationship

2x{ Gt(x, t) - pt(x)} = Gi(x, t) - pi(x) + tGL l(X,

Therefore

2xGt(x, t) = Giex, t) + tGL l(X, t) - 2.

291

(2.24 )

Clearly U{(x, t), 1=0, 1,..., k - 1 also satisfies the inhomogeneous system
(2.21) and (2.22), hence G{(x, t)- U{(x, t) satisfies the corresponding
homogeneous system which is identical with (2.5). This and Theorem 2,1
establish

THEOREM 2.3. The generating functions G{(x, t) of (2.15) have the form

Gt(x, t) = U{(x, t) + {Ulx) + tUk_ 1 2(X)} F*(x, t), (2.25)

where F*(x, t) depends on x, t and k but is independent of I.

Now Theorem 2.3 and an argument similar to what we used to prove
Theorem 2.2 give

THEOREM 2.4. A generating function for the numerator polynomials is

CI) 2t 1-2tkT(x)+t2k
L p;(x) t

n
= 1 2 2 + 12

k
2 F*(x, t

k
). (2.26)

n~O - xt+t - xt+t

We now treat the numerator polynomials associated with the sieved
ultraspherical polynomials. In this case the differential equation (2.14)
remains valid with the G's replaced by G*'s. Applying (2.24) we obtain
after some tedious calculations

a
{I - 2tTk(x) + t2} at F*(x, t) + 2(), + 1){ t - Tk(x)} F*(x, t)

= 22{ ei(k- 1)8/(1 - te ikO )+ e -i(k-1)8/(1 _ te - ikO)},

x = cos e. This shows

F*(x, t)=F(x, t){H(t, 8)+H(t, -en
where

(2.27)

and F(x, t) is given by (2.15).
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In the above analysis e ± ie = x ±J?"=l and it is easy to see that
le-iel < leiel if and only if x is in the complex plane cut along [-1,1].
Applying Darboux's method to (2.16) and (2.26) we obtain the relationship

Joo dt/J(t) = 2 {e -ie - 2iA. sin ee-2ike fl (1 - ue -2ike)A -1(1 - U)A dU},
-oox-t 0

which can be inverted using (1.11) to obtain the distribution function t/J.

3. SIEVED q-HERMITE POLYNOMIALS

We now treat the case when the coefficients an, bn, Cn' and dn in (1.3)
satisfy (1.5) but (1.6) is replaced by

amk - I , bmk - I, Cmk-l> and dmk - I are polynomials in qm, (3.1)

where q E ( -1, 1). The results of Section 2 remain valid in this case and
(2.6) becomes a q-difference equation, that is an equation involving F(x, t),
F(x, qt), ..., F(x, qJt). We illustrate the method by considering the example

amk-I =dmk _ 1 = 1, Cmk_I=O. (3.2)

Recall that the case k = 1 of this example is the continuous q-Hermite
polynomials that L. J. Rogers used to prove the celebrated
Rogers-Ramanujan identities. In this case (2.6) becomes

which, inview of (2.7) gives

The above functional equation can be iterated to give

where

n

(a; q)o = 1, (a; q)n = n (1- aqJ-I),
J~I

Now Theorem 2.2 implies·

n = 1, 2,..., or 00.
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(3.6)

We denoted the polynomials under investigation by Hn(x; kj q). When
k=1 these polynomials reduce to Hn(xiq)/(q;q)n' Furthermore,
Theorem 2.1 and (3.3) yield

~ H (. kj ) tn= {Ulx) + tUk_I_Ax)}( -qtUk_ 2(X); q)oo (3.5')
L. nk+1 X, q (teik8. q) (te~ik8. q) ,

n=O 'c() '00

1=0, 1,... , k - 1. Next we apply Darboux's method to (3.4) and obtain

[
( -qeik8Uk_2(X); q)oo e- in8 ]

Hn(x; k Iq) ~ 2Re (1- e2i8 )(q; q)00(qe2ik8 ; q)oo '

as n -'> 00, holding for x E ( -1, 1). The asymptotic relationship (3.6) can be
simplified to

H( 'kl )~2IUk_l(X)(-qeik8Uk_2(X);q)001 (ll+)
n x, q ~ ( . ) (2ik8. ) cos nu 1:,q, q 00 e , q 00

(3.7)

as n -'> 00 for some I: which depends only on e.
We now proceed to compute the (positive) measure that OUf

polynomials are orthogonal with respect to. In the present case the coef­
ficients An' Bn, and Cn of (1.13) are given by

if kfn + 1
(3.8)

m=l,....

The positivity condition (1.14) is obviously satisfied and (1.16) becomes

/=0, k-2, (3.9)

m = 0, 1,.... Therefore there exists a nondecreasing function o-(x) of
bounded variation on ( - 00, 00) such that

foo Hn(x; k Iq) Hm(x; k iq) do-(x) = Anom,n, (3.10)
-00

with An as in (3.9). A theorem of Nevai [llJ asserts that if the series

converges then

00

L {IBn/Ani + I(Cn/AnAn_dli2 -0:1}
n~l

do-(x) = o-'(x) dx+ do-)x),

(3.11 )

(3.12 )
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where u'(x) is continuous and positive in (-IX, IX), supp u'(x) = [IX, IX] and
uix) is a step function (with possibly infinitely many jumps) constant in
( -IX, IX). Furthermore the limiting relation

lim sup u'(x) J 1X
2

- x 2 p~(X)/A" = 2/n,
"

(3.13 )

(3.14)

holds. The above version of Nevai's theorem follows from Corollary 36
(p. 141) and Theorem 40 (p. 143) in Nevai's memoir [11].

In the case of the polynomials {H,,(x; k Iq)}, IX = 1 and the convergence
of the series in (3.11) follows from (3.8). Note that A,,~1/(q; q)w follows
from (3.9). Thus (3.13) holds and we have

'( 8) _ (q; q)w sin 8(qe'kl:l; q)w(qe-'kl:l; qLQ
0' cos - 'kl:l ) 'kl:l2n( -qe' Uk_Ax); q w( _qe- l Uk_2(X); q)w

In the present case the support of dO'(x) is clearly bounded. Recall that
when dO' has compace support the associated moment problem is deter­
mined and Corollary 2.6 (pp. 45-46) in Shohat and Tamarkin [14] is
applicable, that is O'(x) has a jump at x = ~ if and only if 2:;;"'=0 p~(O/An

diverges. In the case of {H,,(x;klq)} it is easy to see that

H,,(1; kl q) = (-1)" H,,( -1; kl q) =An+B+ 0(1),

where A, B depend on q and A and B do not vanish simultaneously, thus
2: m( ± 1; k Iq)/A" diverges since A" ~ 1/(q; q)w' We now apply the same
argument to any x ¢ [ -1, 1]. Since the polynomials are symmetric the
measure du must be symmetric in x, so there is no loss of generality in
assuming x> 1. For such x define 8 by x=cos 8, le-il:ll < Ie i l:lj, 1m 8>0. In
this case applying Darboux's method to (3.4) establishes

(-qe- ikI:lUk_2(X); q)w ei"l:1
H,,(x;k)lq)~( . ) ( 2ikl:l.) (1- -2il:l)' (3.15)q, q w qe , q w e

as n --+ 00, x = cos 8> 1, which will imply the divergence of 2: H~(x; k Iq)/A"
when

(3.16)

It is clear that (3.16) is valid when 1 > q ~ 0. Now let -1 < q < 0 but
q(1-k)< 1. The first term in the infinite product on the left side of (3.16)
is

1 + qe-ikI:lUk_Ax) = 1 +qw(1-Wk- 1)/(1-w), w:=e- 2il:l. (3.17)

Since WE (0, 1) the function W(1 - wk- 1)/(1 - w), being 2:1- 1wi, is strictly
monotone increasing and attains every value in (0, k - 1). This and (3.17)
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show that 1+ qe-ik8Uk_2(X) > 0, hence all the terms in the infinite product
in (3.16) are positive when 0 < q(l- k) < 1. We shall not treat the cases
q < 0, q( 1 - k) > 1 but it seems that in those cases O"(x) will have one jump.

We now record the orthogonality relation of the polynomials
{Hn(x; kl q)}. The above considerations and (3.9) establish the
orthogonality relation

where a'(x) is given by (3.14) and An is as in (3.9).
We now study the numerator polynomials and compute the continued

fraction. The q-difference equation satisfied by F*(x, t) is

{I - 2tTk(x) + t2} F*(x, t) = {1 + qtUk _ 2(X)} F*(x, qt)

2qtUk_ 1(X)

whose solution, subject to F*(x, 0) = 0 is

F*( t) = -2 tU () ~ qn( -qtUk_ 2(X); q)n
x, q k-l X 1.... ( ik8 ) ( -ik8) . (3.

n~O qte ;qn+lqte ;qn+l

Theorem 2.4 and (3.19) yield the generating function

~ H* x· k tn _ 2t _ 2qt
k
Uk_ 1(X)

/::0 n(, [q) -1-2xt+t2 1-2xt+t2

00 qn( -qtkUk_ 2(X); q)n
x " (3.20)1.... (qtkeik8. q) (qtke - ik8. q) .

n=O ~ n+l ,n+l

For x in the complex plane cut along [-1, 1] the sign of the radical is

determined by IX-~I < IX+~I so if x=cos () then Ie-ie, <
leiBl. Applying Darboux's method to (3.20) and (3.4) we get

where

lim H::(x;klq)jHAx;klq)=X(x),
n~ 00

(3.21 )

640/46/3-6

(3.22)
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